Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Highly flexible, conductive and transparent MoO3/Ag/MoO3 multilayer electrode for organic photovoltaic cells

Identifieur interne : 000B82 ( Main/Repository ); précédent : 000B81; suivant : 000B83

Highly flexible, conductive and transparent MoO3/Ag/MoO3 multilayer electrode for organic photovoltaic cells

Auteurs : RBID : Pascal:13-0350439

Descripteurs français

English descriptors

Abstract

MoO3/Ag/MoO3(MAM) multilayer structures were deposited by vacuum evaporation on polyethylene terephthalate (PET) substrate. We demonstrate that, as in the case of glass substrate, the sheet resistance of such structures depends significantly on the Ag film deposition rate. When it is deposited between 0.2 and 0.4 nm/s, an Ag thickness of 11 nm allows achieving sheet resistance of 13 Ω/sq and an averaged transmission of 74%. A study of the influence of the PET substrate on the optimum MoO3 thicknesses was done. A good qualitative agreement between the theoretical calculations of the variation of the optical transmittance of the MoO3/Ag/MoO3 structures is obtained. The optimum MAM structures MoO3 (17.5 nm)/Ag (11 nm)/MoO3 (35 nm) has a factor of merit FM = 4.21 10-3 (Ω/sq)-1. Proven by the scotch test the MAM structures exhibit a good adhesion to the PET substrates. The MAM structures were also submitted to bending tests. For outer bending, the samples exhibit no variation of their resistance value, while for inner bending there is a small increase of the resistance of the MAM structures. However this increasing is smaller than that exhibited by Indium Tin Oxide. When the PET/MAM structures are used as anode in organic photovoltaic cells, it is shown that the need to use thicker Ag films inside the multilayer and to cover the MAM with Au to obtain promising Current density vs Voltage characteristics is due to the heating of the PET substrate during the deposition process.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0350439

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Highly flexible, conductive and transparent MoO
<sub>3</sub>
/Ag/MoO
<sub>3 </sub>
multilayer electrode for organic photovoltaic cells</title>
<author>
<name sortKey="Abachi, T" uniqKey="Abachi T">T. Abachi</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>L'UNAM, Université de Nantes, MOLTECH-Anjou, CNRS, UMR 6200, 2 rue de la Houssinière, BP 92208</s1>
<s2>Nantes 44322</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cattin, L" uniqKey="Cattin L">L. Cattin</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Université de Nantes, Institut des Matériaux Jean Rouxel (IMN), CNRS, UMR 6205, 2 rue de la Houssinière, BP 32229</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Nantes</settlement>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
</author>
<author>
<name sortKey="Louarn, G" uniqKey="Louarn G">G. Louarn</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Université de Nantes, Institut des Matériaux Jean Rouxel (IMN), CNRS, UMR 6205, 2 rue de la Houssinière, BP 32229</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Nantes</settlement>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lare, Y" uniqKey="Lare Y">Y. Lare</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>L'UNAM, Université de Nantes, MOLTECH-Anjou, CNRS, UMR 6200, 2 rue de la Houssinière, BP 92208</s1>
<s2>Nantes 44322</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bou, A" uniqKey="Bou A">A. Bou</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Aix-Marseille Université, Institut Matériaux Microélectronique Nanosciences de Provence (IM2NP), CNRS-UMR 7334, Domaine Universitaire de Saint-Jérôme</s1>
<s2>Marseille, 13397</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="06">
<s1>Crosslux SAS, Avenue Georges Vacher, Immeuble CCE ZI Rousset-Peynier</s1>
<s2>13790</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Makha, M" uniqKey="Makha M">M. Makha</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>L'UNAM, Université de Nantes, MOLTECH-Anjou, CNRS, UMR 6200, 2 rue de la Houssinière, BP 92208</s1>
<s2>Nantes 44322</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Laboratoire Optoélectronique et Physico-chimie des Matériaux, Université Ibn Tofail, Faculté des Sciences, BP 133</s1>
<s2>Kenitra 14000</s2>
<s3>MAR</s3>
<sZ>6 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
<wicri:noRegion>Kenitra 14000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Torchio, P" uniqKey="Torchio P">P. Torchio</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Aix-Marseille Université, Institut Matériaux Microélectronique Nanosciences de Provence (IM2NP), CNRS-UMR 7334, Domaine Universitaire de Saint-Jérôme</s1>
<s2>Marseille, 13397</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fleury, M" uniqKey="Fleury M">M. Fleury</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Université de Nantes, Institut des Matériaux Jean Rouxel (IMN), CNRS, UMR 6205, 2 rue de la Houssinière, BP 32229</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Nantes</settlement>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
</author>
<author>
<name sortKey="Morsli, M" uniqKey="Morsli M">M. Morsli</name>
<affiliation wicri:level="4">
<inist:fA14 i1="05">
<s1>L'UNAM, Université de Nantes, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208</s1>
<s2>Nantes, 44322</s2>
<s3>FRA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
</author>
<author>
<name sortKey="Addou, M" uniqKey="Addou M">M. Addou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Laboratoire Optoélectronique et Physico-chimie des Matériaux, Université Ibn Tofail, Faculté des Sciences, BP 133</s1>
<s2>Kenitra 14000</s2>
<s3>MAR</s3>
<sZ>6 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
<wicri:noRegion>Kenitra 14000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bernede, J C" uniqKey="Bernede J">J. C. Bernede</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>L'UNAM, Université de Nantes, MOLTECH-Anjou, CNRS, UMR 6200, 2 rue de la Houssinière, BP 92208</s1>
<s2>Nantes 44322</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0350439</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0350439 INIST</idno>
<idno type="RBID">Pascal:13-0350439</idno>
<idno type="wicri:Area/Main/Corpus">000539</idno>
<idno type="wicri:Area/Main/Repository">000B82</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption spectrum</term>
<term>Adhesion</term>
<term>Bending</term>
<term>Deposition process</term>
<term>Deposition rate</term>
<term>Ethylene terephthalate polymer</term>
<term>Heat treatment</term>
<term>Indium oxide</term>
<term>Mechanical properties</term>
<term>Multilayer</term>
<term>Multiple layer</term>
<term>Photovoltaic cell</term>
<term>Sheet resistivity</term>
<term>Solar cell</term>
<term>Thin film</term>
<term>Tin oxide</term>
<term>Tribology</term>
<term>Vacuum deposition</term>
<term>Voltage current curve</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Couche multimoléculaire</term>
<term>Dispositif photovoltaïque</term>
<term>Dépôt sous vide</term>
<term>Résistivité couche</term>
<term>Couche mince</term>
<term>Vitesse dépôt</term>
<term>Ethylène téréphtalate polymère</term>
<term>Spectre absorption</term>
<term>Adhérence</term>
<term>Tribologie</term>
<term>Propriété mécanique</term>
<term>Flexion</term>
<term>Oxyde d'indium</term>
<term>Multicouche</term>
<term>Oxyde d'étain</term>
<term>Caractéristique courant tension</term>
<term>Traitement thermique</term>
<term>Procédé dépôt</term>
<term>Cellule solaire</term>
<term>Substrat polymère</term>
<term>Substrat verre</term>
<term>Substrat argent</term>
<term>8460J</term>
<term>8115E</term>
<term>6860B</term>
<term>7361</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">MoO
<sub>3</sub>
/Ag/MoO
<sub>3</sub>
(MAM) multilayer structures were deposited by vacuum evaporation on polyethylene terephthalate (PET) substrate. We demonstrate that, as in the case of glass substrate, the sheet resistance of such structures depends significantly on the Ag film deposition rate. When it is deposited between 0.2 and 0.4 nm/s, an Ag thickness of 11 nm allows achieving sheet resistance of 13 Ω/sq and an averaged transmission of 74%. A study of the influence of the PET substrate on the optimum MoO
<sub>3</sub>
thicknesses was done. A good qualitative agreement between the theoretical calculations of the variation of the optical transmittance of the MoO
<sub>3</sub>
/Ag/MoO
<sub>3</sub>
structures is obtained. The optimum MAM structures MoO
<sub>3</sub>
(17.5 nm)/Ag (11 nm)/MoO
<sub>3</sub>
(35 nm) has a factor of merit F
<sub>M</sub>
= 4.21 10
<sup>-3</sup>
(Ω/sq)
<sup>-1</sup>
. Proven by the scotch test the MAM structures exhibit a good adhesion to the PET substrates. The MAM structures were also submitted to bending tests. For outer bending, the samples exhibit no variation of their resistance value, while for inner bending there is a small increase of the resistance of the MAM structures. However this increasing is smaller than that exhibited by Indium Tin Oxide. When the PET/MAM structures are used as anode in organic photovoltaic cells, it is shown that the need to use thicker Ag films inside the multilayer and to cover the MAM with Au to obtain promising Current density vs Voltage characteristics is due to the heating of the PET substrate during the deposition process.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>545</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Highly flexible, conductive and transparent MoO
<sub>3</sub>
/Ag/MoO
<sub>3 </sub>
multilayer electrode for organic photovoltaic cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ABACHI (T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CATTIN (L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LOUARN (G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LARE (Y.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BOU (A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MAKHA (M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>TORCHIO (P.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>FLEURY (M.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>MORSLI (M.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>ADDOU (M.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>BERNEDE (J. C.)</s1>
</fA11>
<fA14 i1="01">
<s1>L'UNAM, Université de Nantes, MOLTECH-Anjou, CNRS, UMR 6200, 2 rue de la Houssinière, BP 92208</s1>
<s2>Nantes 44322</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Université de Nantes, Institut des Matériaux Jean Rouxel (IMN), CNRS, UMR 6205, 2 rue de la Houssinière, BP 32229</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Aix-Marseille Université, Institut Matériaux Microélectronique Nanosciences de Provence (IM2NP), CNRS-UMR 7334, Domaine Universitaire de Saint-Jérôme</s1>
<s2>Marseille, 13397</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Laboratoire Optoélectronique et Physico-chimie des Matériaux, Université Ibn Tofail, Faculté des Sciences, BP 133</s1>
<s2>Kenitra 14000</s2>
<s3>MAR</s3>
<sZ>6 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>L'UNAM, Université de Nantes, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208</s1>
<s2>Nantes, 44322</s2>
<s3>FRA</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Crosslux SAS, Avenue Georges Vacher, Immeuble CCE ZI Rousset-Peynier</s1>
<s2>13790</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>438-444</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000504221210700</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0350439</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>MoO
<sub>3</sub>
/Ag/MoO
<sub>3</sub>
(MAM) multilayer structures were deposited by vacuum evaporation on polyethylene terephthalate (PET) substrate. We demonstrate that, as in the case of glass substrate, the sheet resistance of such structures depends significantly on the Ag film deposition rate. When it is deposited between 0.2 and 0.4 nm/s, an Ag thickness of 11 nm allows achieving sheet resistance of 13 Ω/sq and an averaged transmission of 74%. A study of the influence of the PET substrate on the optimum MoO
<sub>3</sub>
thicknesses was done. A good qualitative agreement between the theoretical calculations of the variation of the optical transmittance of the MoO
<sub>3</sub>
/Ag/MoO
<sub>3</sub>
structures is obtained. The optimum MAM structures MoO
<sub>3</sub>
(17.5 nm)/Ag (11 nm)/MoO
<sub>3</sub>
(35 nm) has a factor of merit F
<sub>M</sub>
= 4.21 10
<sup>-3</sup>
(Ω/sq)
<sup>-1</sup>
. Proven by the scotch test the MAM structures exhibit a good adhesion to the PET substrates. The MAM structures were also submitted to bending tests. For outer bending, the samples exhibit no variation of their resistance value, while for inner bending there is a small increase of the resistance of the MAM structures. However this increasing is smaller than that exhibited by Indium Tin Oxide. When the PET/MAM structures are used as anode in organic photovoltaic cells, it is shown that the need to use thicker Ag films inside the multilayer and to cover the MAM with Au to obtain promising Current density vs Voltage characteristics is due to the heating of the PET substrate during the deposition process.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15E</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60H60B</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70C61</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Couche multimoléculaire</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Multilayer</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Capa multimolecular</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dépôt sous vide</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Vacuum deposition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Depósito bajo vacío</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Résistivité couche</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Sheet resistivity</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Resistividad capa</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Vitesse dépôt</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Deposition rate</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Velocidad deposición</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Ethylène téréphtalate polymère</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Ethylene terephthalate polymer</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Etileno tereftalato polímero</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Spectre absorption</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Absorption spectrum</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Espectro de absorción</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Adhérence</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Adhesion</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Adherencia</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Tribologie</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Tribology</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Tribología</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Propriété mécanique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Mechanical properties</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Propiedad mecánica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Flexion</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Bending</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Flexión</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Multicouche</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Multiple layer</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Capa múltiple</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Voltage current curve</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Característica corriente tensión</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Traitement thermique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Heat treatment</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Tratamiento térmico</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Procédé dépôt</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Deposition process</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Procedimiento revestimiento</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Substrat polymère</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Substrat verre</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Substrat argent</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>8115E</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>6860B</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>7361</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>329</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B82 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000B82 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0350439
   |texte=   Highly flexible, conductive and transparent MoO3/Ag/MoO3 multilayer electrode for organic photovoltaic cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024